中國工信部于2013年12月4日向中國移動通信集團公司、中國電信集團公司和中國聯合網絡通信集團有限公司頒發“LTE/第四代數字蜂窩移動通信業務(TD-LTE)”經營許可。中國移動獲得130MHz頻譜資源,分別為1880 -1900MHz、2320-2370MHz、2575-2635MHz;中國聯通獲得40MHz頻譜資源,分別為2300-2320MHz、2555-2575MHz;中國電信獲得40MHz頻譜資源,分別為2370-2390MHz、2635-2655MHz [11]。截至2011年12月底,中國移動TD用戶總數為5121萬,穩居國內三大3G標準***位。但是中國移動很清楚,TD網絡在多...
2008年3月,ITU開始了候選技術的征集和標準化進程,稱為IMT-Advanced。響應ITU關于4GIMT-Advanced技術的征集,3GPP中將正在研究的LTERelease10以及之后的技術版本稱為LTE-Advanced,并且向ITU進行了候選技術的提交。 [4]語音通話LTE支持FDD和TDD兩種雙工方式,在LTERelease8版本中,采用20MHz的通信帶寬,空中接口的下行峰值速率超過300Mbit/s上行方向的峰值速率也超過了80Mbit/s。而LTERelease10版本(LTE-Advanced)將支持100MHz的通信帶寬,空中接口的峰值速率超過1Gbit/s。LTE...
IPRAN是針對移動回傳應用場景進行優化定制的路由器/交換機整體解決方案,具備電路仿真、同步等能力,提高了OAM和保護能力。IPRAN的**是IP/MPLS技術。MPLS(Multi-ProtocolLabelSwitching,多協議標簽交換)是基于標記的IP路由選擇方法。這些標記可以被用來**逐跳式或者顯式路由,并指明服務質量(QoS)、虛擬專網等各類信息。路由協議在一個指定源和目的地之間選擇**短路徑,不論該路徑是否超載。利用顯式路由選擇,服務提供商可以選擇特殊流量所經過的路徑,使流量能夠選擇一條低延遲的路徑。MPLS協議實現將第三級的包交換轉換成第二級的交換。MPLS可以使用各種二層協...
(3)L2到L3的橋接應支持終結ETHPW后進行L2的VSI交換實例的功能,并支持L2收斂后進行L3的VRF虛擬路由轉發實例的功能。(4)靜態L3VPN通過結合PTN隧道技術和L3VPN路由技術實現。PTN隧道用于L3分組轉發,可以通過網絡管理系統人工建立;L3VPN路由表應通過網絡管理系統人工建立,也可以通過規劃工具生成并批量下發到**層PTN設備中。LTE技術引入后,S1接口與X2接口均對移動回傳網絡提出了三層功能需求。LTE移動回傳網一般有4種部署方案,如圖5所示。無論采用何種方案,三層功能都是LTE回傳網絡的必要功能。2021年8月,我國LTE網IPv6總流量超過10Tbps,占全網總...
不同之處在于:TD-LTE的幀結構FS2中有半幀和特殊子幀的概念,FS2的每一個無線幀由2個長度為5ms的半幀組成,每個半幀一般包含4個普通子幀和1個特殊子幀。普通子幀由2個長度為0.5ms的時隙組成,而特殊子幀由DwPTS、GP、UpPTS這3個特殊時隙組成。DwPTS、GP和UpPTS的長度可配置,以適應不同場景下的覆蓋、容量和抗干擾等需求,但要求總長度等于1ms [6]。常用的是10:2:2的配置模式,借用特殊時隙來傳輸業務以提高下行吞吐量;而3:9:2的模式增大了上下行切換的GP時長,可以較好地適應傳輸時延,避免遠距離同頻干擾或某些TD-SCDMA配置引起的干擾,比較大覆蓋范圍可達30...
2004年底,在3GPP中開始進行LTE的標準化工作,與3G以CDMA技術為基礎不同,根據無線通信向寬帶化方向發展的趨勢,LTE采用了OFDM技術為基礎,結合多天線和快速分組調度等設計理念,形成了新的面向下一代移動通信系統的空中接口技術,又稱為3G演進型系統(LTE,LongTermEvolution)。 [4]2008年初,完成了LTE***個版本的系統技術規范,即Release8。在3GPP中進行LTE技術研究的同時,國際電信聯盟(ITU)一直在開展關于下一代移動通信系統的市場需求和頻率規劃等方面的調研工作,為制定4G技術的國際標準建議做準備。相比于3G,TD-LTE在系統性能上有了跨越式...
時延優化——用戶面數據單向傳輸時延小于5ms,控制面空閑至***的狀態轉移時延小于100ms。服務內容多樣化——具有高性能廣播業務,實時業務支持能力提高,VoIP達到UTRAN電路域的性能;運維成本降低——扁平、簡化的網絡架構,降低運營商網絡的運營和維護成本 [4]。(1)OFDM(正交頻分復用,Orthogonal Frequency Division Multiple-xing)是一種多載波正交調制技術,將高速串行數據流轉換成低速并行數據流,每路數據流經調制后在不同的子載波上分別傳輸,各子載波頻譜重疊但相互正交 [5]。相對于OFDM/OFDMA,SC-FDMA具有較低。奉賢區本地LTE模...
該方式在支持對稱業務時,能充分利用上下行的頻譜,但在非對稱的分組交換(互聯網)工作時,頻譜利用率則**降低(由于低上行負載,造成頻譜利用率降低約40%)。 在這點上,TDD模式有著FDD無法比擬的優勢。 [9]LTE網絡適用于相當多的頻段,而不同地區選擇的頻段互不相同。北美網絡計劃使用MHz;歐洲網絡計劃使用亞洲網絡計劃使用;澳洲網絡計劃使用1800MHz。所以在某國家使用正常的終端在另一國家的網絡中很可能無法使用,用戶需要使用支持多頻段的終端進行國際漫游。這是一種近于空域時域聯合的分集和干擾對消處理。閔行區定制LTE模塊供應商2012年3月30日,中國移動在杭州正式開通TD-LTE體驗,Bl...
IPRAN承載方案指在匯聚/**層采用IP/MPLS技術,接入層主要采用二層增強以太技術,或二層增強以太與IP/MPLS技術相結合的方案。IPRAN在匯聚/**節點采用的設備為支持IP/MPLS的路由器,基站接入節點采用的設備為路由器或交換機。IPRAN的組網結構如圖2所示。PTN技術簡介PTN(PacketTransportNetwork,分組傳送網)原有定義包括PBT技術及MPLS-TP(T-MPLS)兩種技術。由于各廠家均沒有支持PBT的研發計劃,因此MPLS-TP(T-MPLS)技術成為目前PTN技術的***技術實現方式。以下所提的PTN技術均指的是MPLS-TP(T-MPLS)技術。...
OFDM技術OFDM技術LTE系統的主要特點,它的基本思想是把高速數據流分散到多個正交的子載波上傳輸,從而使子載波上的符號速率**降低,符號持續時間**加長,因而對時延擴展有較強的抵抗力,減小了符號間干擾的影響。通常在OFDM符號前加入保護間隔,只要保護問隔大于信道的時延擴展則可以完全消除符號間干擾ISI。 [6]MIMO技術MIMO作為提高系統傳輸率的**主要手段,也受到了***關注。由于OFDM的子載波衰落情況相對平坦,十分適合與MIMO技術相結合,提高系統性能。MIMO系統在發射端和接收端均采用多天線或(陣判天線)和多通道。發射機效率較高,能提高小區邊緣的網絡性能。楊浦區制造LTE模塊銷...
在僅次于中國的印度電信市場,2011年6月,高通競得印度4個電信區域的寬帶無線接入( BWA)非對稱2.3GHz頻譜。該頻段只適合發展TDD技術,高通承諾將組建合資公司建設LTE網絡,標志著TD-LTE真正成為高通的戰略重點之一。摩托羅拉正致力于將TD-LTE推廣到中東、北美、南美、印度、俄羅斯等地,并已與歐洲3個前列運營商合作開展TD-LTE的網絡測試。截至2011年2月初,中興通訊與全球運營商簽署15項LTE商用合同并合作部署近65個試驗網,擁有18個TD-LTE商用和實驗網,與歐美等**運營商在LTE領域的合作進程進一步加深 [8]。隨著技術的演進與發展,3GPP相繼提出了TD-LTE,...
OFDM技術OFDM技術LTE系統的主要特點,它的基本思想是把高速數據流分散到多個正交的子載波上傳輸,從而使子載波上的符號速率**降低,符號持續時間**加長,因而對時延擴展有較強的抵抗力,減小了符號間干擾的影響。通常在OFDM符號前加入保護間隔,只要保護問隔大于信道的時延擴展則可以完全消除符號間干擾ISI。 [6]MIMO技術MIMO作為提高系統傳輸率的**主要手段,也受到了***關注。由于OFDM的子載波衰落情況相對平坦,十分適合與MIMO技術相結合,提高系統性能。MIMO系統在發射端和接收端均采用多天線或(陣判天線)和多通道。MIMO系統在發射端和接收端均采用多天線或(陣判天線)和多通道。...
DD-LTEFDD(頻分雙工)是該技術支援的兩種雙工模式之一,應用FDD式的LTE即為FDD-LTE。由于無線技術的差異使用頻段的不同以及各 個廠家的利益等因素,FDD-LTE的標準化與產業發展都**于TDD-LTE。FDD模式的特點是在分離(上下行頻率間隔190MHz)的兩個對稱頻率信道上,系統進行接收和傳送,用保證頻段來分離接收和傳送信道。 [9]FDD模式的優點是采用包交換等技術,可突破二代發展的瓶頸,實現高速數據業務,并可提高頻譜利用率,增加系統容量。但FDD必須采用成對的頻率,即在每2 x 5MHz的帶寬內提供第三代業務。提高“小區邊緣比特率”,在5km區域滿足容量,30km區域輕微...
穩定性好:在復雜的通信環境中,LTE模塊能夠保持穩定的通信連接。兼容性好:LTE模塊具有較好的兼容性,能夠適配多種設備和網絡環境。三、應用領域移動通信:LTE模塊可用于移動設備與基站之間的通信,實現高速數據傳輸和語音通話。物聯網:在物聯網領域,LTE模塊廣泛應用于智能家居、智能交通、智能醫療等行業,實現設備間的互聯互通。此外,LTE模塊還廣泛應用于電力、環保、金融、工業自動化、遠程監控、安防監控、車聯網等領域技術升級:隨著5G技術的不斷發展,LTE模塊需要不斷推陳出新,提升性能,以適應市場需求。例如,LTE-A和LTE-A Pro作為LTE的變種,已經實現了速度的提升和網絡容量的增強。。LTE...
穩定性好:在復雜的通信環境中,LTE模塊能夠保持穩定的通信連接。兼容性好:LTE模塊具有較好的兼容性,能夠適配多種設備和網絡環境。三、應用領域移動通信:LTE模塊可用于移動設備與基站之間的通信,實現高速數據傳輸和語音通話。物聯網:在物聯網領域,LTE模塊廣泛應用于智能家居、智能交通、智能醫療等行業,實現設備間的互聯互通。此外,LTE模塊還廣泛應用于電力、環保、金融、工業自動化、遠程監控、安防監控、車聯網等領域技術升級:隨著5G技術的不斷發展,LTE模塊需要不斷推陳出新,提升性能,以適應市場需求。例如,LTE-A和LTE-A Pro作為LTE的變種,已經實現了速度的提升和網絡容量的增強。。頻譜利...
(2)MIMO(多天線,Multiple Input Multiple Output)是收發段都采用多個天線進行傳輸的方式,可以提高通信質量和數據速率 [5]。(3)鏈路自適應技術:由于移動通信的無線傳輸信道是一個多徑衰落、隨機時變的信道,使得通信過程存在不確定性。鏈路自適應技術能夠根據信道狀態信息確定當前信道的容量,根據容量確定合適的編碼調制方式,以便比較大限度地發送信息,提高系統資源的利用率 [5]。(4)網絡架構扁平化:TD-LTE去掉了BSC/RNC這個網絡層,根本性地改善了業務時延 [5]。FDD(頻分雙工)是該技術支援的兩種雙工模式之一,應用FDD式的LTE即為FDD-LTE。靜安...
為了快速完成TD-LTE網絡的杭州全覆蓋,浙江移動在建網過程中采用了與TD-SCDMA同頻演進的方式,即不像其他城市那樣選擇2.6MHz頻段為TD-LTF所用,而是采用與TD-SCDMA同樣的F頻段,從而實現了在原來TD-SCDMA基站上增加一些板卡就能升級為TD-LTE,使得改造進度**加快。中國移動預計,如果將該技術推廣到全國,大約可節省數千億元的投資。但TD-LTE與TD-SCDMA在技術上有很大的不同,組網方式的差異也很大,*靠通過對TD-SCDMA原有基站設備的軟硬件升級是不能形成大規模商用的TD-LTE網絡的 [10]。相比于3G,TD-LTE在系統性能上有了跨越式提高,能夠為用戶...
OFDM技術OFDM技術LTE系統的主要特點,它的基本思想是把高速數據流分散到多個正交的子載波上傳輸,從而使子載波上的符號速率**降低,符號持續時間**加長,因而對時延擴展有較強的抵抗力,減小了符號間干擾的影響。通常在OFDM符號前加入保護間隔,只要保護問隔大于信道的時延擴展則可以完全消除符號間干擾ISI。 [6]MIMO技術MIMO作為提高系統傳輸率的**主要手段,也受到了***關注。由于OFDM的子載波衰落情況相對平坦,十分適合與MIMO技術相結合,提高系統性能。MIMO系統在發射端和接收端均采用多天線或(陣判天線)和多通道。MIMO作為提高系統傳輸率的主要手段,也受到了關注。虹口區定制L...
(2)PTN**設備和CE設備之間基于NativeETH方式采用“口”字形連接,支持基于IEEE802.3ah的OAM和雙歸保護,同地市多廠商PTN**設備共用CE設備,不涉及互通。方案二:**層PTN支持L3方案。該方案中,匯聚/接入層PTN采用L2靜態隧道,**層PTN主要采用靜態L3VPN,可選采用動態L3VPN,如圖4所示。(1)PTN接入/匯聚設備沿用現有L2VPN分組轉發功能,采用ETHPW方式為基站提供到**層PTN節點的2層傳輸管道。(2)PTN**設備應支持L2到L3的橋接功能和靜態L3VPN功能,來滿足LTE移動回傳中本地的S1和X2業務承載,并提供OAM和網絡保護。提供高...
(1)高速率:20MHz帶寬內實現下行峰值速率超過100Mbit/s,上行峰值速率超過50Mbit/s。(2)低時延:TD-LTE系統要求業務傳輸的單向時延低于5ms,控制平面從駐留狀態到***狀態的遷移時間小于100ms。(3)頻譜利用率明顯提高:支持1.25~20MHz的多種系統帶寬對稱或非對稱靈活配置。提高了頻譜利用率,是3G的2~4倍,下行鏈路5bit/s/Hz,上行鏈路2.5bit/s/Hz。(4)全分組交換:取消電路交換域,采用基于全分組的包交換,語音由VoIP實現 [1]。多址方式:無線TD - LTE以OFDM技術為基礎,下行采用OFDMA,而上行根據鏈路特點采用單載波DFT ...
時延優化——用戶面數據單向傳輸時延小于5ms,控制面空閑至***的狀態轉移時延小于100ms。服務內容多樣化——具有高性能廣播業務,實時業務支持能力提高,VoIP達到UTRAN電路域的性能;運維成本降低——扁平、簡化的網絡架構,降低運營商網絡的運營和維護成本 [4]。(1)OFDM(正交頻分復用,Orthogonal Frequency Division Multiple-xing)是一種多載波正交調制技術,將高速串行數據流轉換成低速并行數據流,每路數據流經調制后在不同的子載波上分別傳輸,各子載波頻譜重疊但相互正交 [5]。LTE項目是3G 的演進,是3G與4G技術之間的一個過渡,是3.9G的...
(1)方案一:三層功能在**層MME/S-GW下側的CE路由器部署,實現X2接口的轉發。(2)方案二:三層功能在**層傳送承載設備部署,實現X2接口的轉發。(3)方案三:三層功能在匯聚層傳送承載設備部署,實現X2接口的轉發。(4)方案四:三層功能在接入層傳送承載部署,在匯聚層實現X2接口的轉發。對于LTE的E-UTRAN側接口,主要包括S1和X2接口,LTE采用全IP化的扁平網絡結構,取消了RNC網元,eNodeB直接和EPC通過S1邏輯接口相連,相鄰eNodeB之間通過X2邏輯接口直接相連。為了提高**網的負荷分擔和冗災能力,eNodeB支持S1-flex接口與多個S-GW或MME互連。若各...
(2)PTN**設備和CE設備之間基于NativeETH方式采用“口”字形連接,支持基于IEEE802.3ah的OAM和雙歸保護,同地市多廠商PTN**設備共用CE設備,不涉及互通。方案二:**層PTN支持L3方案。該方案中,匯聚/接入層PTN采用L2靜態隧道,**層PTN主要采用靜態L3VPN,可選采用動態L3VPN,如圖4所示。(1)PTN接入/匯聚設備沿用現有L2VPN分組轉發功能,采用ETHPW方式為基站提供到**層PTN節點的2層傳輸管道。(2)PTN**設備應支持L2到L3的橋接功能和靜態L3VPN功能,來滿足LTE移動回傳中本地的S1和X2業務承載,并提供OAM和網絡保護。但FD...
(2) TD-LTE產業鏈不成熟,難以發揮規模效應。一些業內人員認為在2G時代,技術很好的CDMA網絡發展遠不如GSM網絡主要是因為CDMA的產業鏈不及后者。TD-LTE發展的比較大問題在于產業鏈的成熟度不夠,而FDD-LTE的比較大優勢正是產業鏈的成熟和規模效應 [10]。(3)國內外TD-LTE運營商所使用的終端還是以MIFI(基站數據接入設備)、數據卡、CPE(家庭無線接入設備)等為主,如果有手機的話,也不能有效地實現話音通話,只能當作貓( MODEM)來使用。由于TD-LTE商用頻譜還沒有劃定,更沒有4G牌照的發放跡象,這導致通信設備廠商及手機廠商不敢大幅投入,全部持觀望態度。這也影響...
質量指標包括接通率、掉話率、切換成功率等。在同頻組網時,網絡負荷在50%條件下,要求TD-LTE無線接通率大于95%,掉話率小于4%,系統內切換成功率大于95%。同時要求在無線網絡覆蓋區域內的90%位置,99%的時間可以接入網絡,開展的數據業務塊差錯率小于10% [6]。能夠靈活配置頻率,使用FDD系統不易使用的零散頻段;可以通過調整上下行時隙轉換點,提高下行時隙比例,能夠很好地支持非對稱業務;具有上下行信道一致性,基站的接收和發送可以共用部分射頻單元,降低了設備成本;接收上下行數據時,不需要收發隔離器,只需要一個開關即可,降低了設備的復雜度;具有上下行信道互惠性,能夠更好地采用傳輸預處理技術...
不同之處在于:TD-LTE的幀結構FS2中有半幀和特殊子幀的概念,FS2的每一個無線幀由2個長度為5ms的半幀組成,每個半幀一般包含4個普通子幀和1個特殊子幀。普通子幀由2個長度為0.5ms的時隙組成,而特殊子幀由DwPTS、GP、UpPTS這3個特殊時隙組成。DwPTS、GP和UpPTS的長度可配置,以適應不同場景下的覆蓋、容量和抗干擾等需求,但要求總長度等于1ms [6]。常用的是10:2:2的配置模式,借用特殊時隙來傳輸業務以提高下行吞吐量;而3:9:2的模式增大了上下行切換的GP時長,可以較好地適應傳輸時延,避免遠距離同頻干擾或某些TD-SCDMA配置引起的干擾,比較大覆蓋范圍可達30...
LTE(Long Term Evolution,長期演進)是由3GPP(The 3rd Generation Partnership Project,第三代合作伙伴計劃)組織制定的UMTS(Universal Mobile Telecommunications System,通用移動通信系統)技術標準的長期演進,于2004年12月在3GPP多倫多會議上正式立項并啟動。LTE系統引入了OFDM(Orthogonal Frequency Division Multiplexing,正交頻分復用)和MIMO(Multi-Input & Multi-Output,多輸入多輸出)等關鍵技術,***增加了...
LTE(Long Term Evolution,長期演進)是由3GPP(The 3rd Generation Partnership Project,第三代合作伙伴計劃)組織制定的UMTS(Universal Mobile Telecommunications System,通用移動通信系統)技術標準的長期演進,于2004年12月在3GPP多倫多會議上正式立項并啟動。LTE系統引入了OFDM(Orthogonal Frequency Division Multiplexing,正交頻分復用)和MIMO(Multi-Input & Multi-Output,多輸入多輸出)等關鍵技術,***增加了...
LTE技術主要存在TDD和FDD兩種主流模式,兩種模式各具特色。其中,FDD-LTE在國際中應用***,而TD-LTE在我國較為常見。 [2]LTE(Long Term Evolution,長期演進)項目是3G 的演進,是3G與4G技術之間的一個過渡,是3.9G的全 球標準。它改進并增強了3G的空中接入技術,采用 OFDM和MIMO作為其無線網絡演進的***標準。在 20MHz頻譜帶寬下提供下行100Mbit/s與上行50Mbit/s 的峰值速率,改善了小區邊緣用戶的性能,提高小區 容量和降低系統延遲。 [3]相比于3G,TD-LTE在系統性能上有了跨越式提高,能夠為用戶提供更加豐富多彩的移動...
多天線接收機利用空時編碼處理能夠分開并解碼數據子流,從而實現比較好的處理。若各發射接收天線間的通道響應**,則多入多出系統可以創造多個并行空間信道。通過這些并行空問信道**地傳輸信息,數據速率必然可以提高。MIMO將多徑無線信道與發射、接收視為一個整體進行優化,從而實現高的通信容量和頻譜利用率。這是一種近于比較好的空域時域聯合的分集和干擾對消處理。當功率和帶寬固定時,多入多出系統的最大容量或容量上限隨**小天線數的增加而線性增加。而在同樣條件下,在接收端或發射端采用多天線或天線陣列的普通智能天線系統,其容量*隨天線數的對數增加而增加。 [6]容量提升:在20MHz帶寬下,下行峰值速率達到100...