電纜作為電力傳輸的“大動脈”,其運行狀態直接影響電網安全。在線監測系統通過實時感知關鍵參數,構建起電纜的“數字神經系統”,實現從被動搶修到主動監測的運維變革。監測參數:電氣狀態:接地電流/環流:監測金屬護層接地線電流,判斷護層絕緣破損、多點接地故障及環流損耗,防止護層過熱。局部放電(PD):通過安裝在護層接地線或電纜本體的HFCT、TEV或超聲波傳感器,捕捉絕緣內部缺陷(如氣隙、雜質、老化)產生的微弱放電信號,評估絕緣劣化程度。溫度狀態:接頭/終端溫度:采用DTS光纖(長距離連續)、無線測溫傳感器(單點),實時監測接頭壓接點、應力錐等部位溫度,預警接觸不良、過載導致的過熱問題。電纜表面/通道環境溫度:了解運行環境,輔助分析溫升原因。運行工況:負荷電流:結合溫度數據,分析載流能力與熱平衡狀態,優化調度。電壓:監測運行電壓水平,評估過電壓問題。GIS局放監測采用特高頻(UHF)法與SF?分解物聯合診斷。重慶電纜環流在線監測裝置
局部放電是開關柜絕緣老化和故障的早期征兆之一。當開關柜內部的絕緣材料受到電場、機械應力或環境因素的影響時,可能會出現局部放電現象。局部放電不僅會加速絕緣材料的老化,還會產生電磁干擾,影響電力系統的正常運行。因此,對開關柜局部放電的監測是在線監測系統的重要組成部分。局部放電監測技術主要有脈沖電流法、超聲波法和高頻電流法等。脈沖電流法是通過在開關柜的接地線上安裝傳感器,檢測局部放電產生的脈沖電流信號。這種方法的優勢是靈敏度高,能夠檢測到微弱的放電信號,但容易受到外部電磁干擾的影響。超聲波法則是利用局部放電產生的超聲波信號來進行檢測。當局部放電發生時,會產生高頻的超聲波,通過在開關柜表面安裝超聲波傳感器,可以檢測到這些信號。超聲波法的優勢是抗干擾能力強,能夠對局部放電的位置進行較為準確的判斷,但其檢測范圍相對較小。高頻電流法則是通過檢測高頻電流信號來實現局部放電的監測。這種方法結合了脈沖電流法和超聲波法的優勢,具有較高的靈敏度和抗干擾能力。隨著數字化技術的發展,局部放電監測系統也在不斷智能化,能夠對監測到的信號進行自動分析和診斷,及時發現設備的潛在故障問題。 安徽變壓器綜合在線監測多設備監測數據接入統一平臺,實現電網資產全生命周期管理。
局部放電是電纜絕緣老化和故障的早期征兆之一。當電纜絕緣材料存在缺陷,如氣隙、雜質或受潮時,會在高電場作用下產生局部放電現象。局部放電不僅會加速絕緣材料的老化,還可能引發絕緣擊穿故障。因此,局部放電監測是電纜在線監測的重要內容。局部放電監測技術主要有脈沖電流法、超聲波法和高頻電流法等。脈沖電流法是通過在電纜接地線上安裝傳感器,檢測局部放電產生的脈沖電流信號。這種方法的優點是靈敏度高,能夠檢測到微弱的放電信號,但容易受到外部電磁干擾的影響。超聲波法則是利用局部放電產生的超聲波信號進行檢測。當局部放電發生時,會產生高頻的超聲波,通過在電纜附近安裝超聲波傳感器,可以檢測到這些信號并對其進行定位。超聲波法的優點是抗干擾能力強,能夠對局部放電的位置進行較為準確的判斷,但其檢測范圍相對較小。高頻電流法則是通過檢測高頻電流信號來實現局部放電的監測。這種方法結合了脈沖電流法和超聲波法的優點,具有較高的靈敏度和抗干擾能力。隨著數字化技術的發展,局部放電監測系統也在不斷智能化,能夠對監測到的信號進行自動分析和診斷,及時發現電纜的潛在故障隱患,為電纜的安全運行提供有力保障。
在電力輸送的“關節”位置——電纜接頭處,溫度是反映其運行狀況的關鍵的指標之一。電纜接頭是整條線路的機械與電氣薄弱點,因安裝工藝、材料老化、接觸不良或過載等原因引發的接觸電阻增大,會迅速轉化為焦耳熱,導致溫度異常升高。電纜接頭溫度在線監測系統正是針對這一問題,利用前沿傳感技術對關鍵接頭進行實時、連續的溫度“把脈”,成為接頭過熱故障的“預警雷達”。該技術的關鍵在于部署高精度、高可靠性的溫度傳感器。目前主流方案包括:分布式光纖測溫(DTS):沿電纜或緊貼接頭敷設特殊傳感光纖,利用拉曼或布里淵散射效應,實現數公里范圍內連續空間溫度感知,精度可達±1°C,是長距離隧道、管廊監測的首要選擇,但成本會比較搞。無線測溫傳感器:采用微型化、低功耗設計,直接安裝在接頭表面或壓接點,通過無線(如LoRa、NB-IoT、Zigbee)或有線方式傳輸數據,尤其適用于分散、難以布線的接頭。紅外熱成像:適用于可觀測的接頭,通過固定式熱像儀進行非接觸掃描,提供直觀的溫度場圖像。在線溫度監測的價值遠不止于實時讀數:準確預警,防患未“燃”:系統設定多級溫度閾值(如環境溫升>15°C報警,>30°C跳閘),自動觸發告警。 電纜環流在線監測通過護層接地電流分析,診斷交叉互聯系統故障。
電纜在線監測的價值在于其能夠持續、實時地捕捉反映電纜運行狀態的關鍵物理量,為維護提供依據。主要監測參數可歸納為以下幾類:局部放電(PD):這是監測的重中之重。局部放電是電纜絕緣內部或表面存在微小缺陷(如氣隙、雜質)時,在高電場作用下發生的微小的、非貫穿性的放電現象。它是絕緣早期劣化靈敏的征兆之一。在線監測系統通過安裝在電纜接頭、終端或本體上的高頻電流互感器(HFCT)、電容耦合器或超聲波傳感器,捕捉放電產生的脈沖電流、電磁波或聲波信號,分析其幅值、相位、次數和模式,評估絕緣缺陷的嚴重程度和發展趨勢,實現故障的早期預警。溫度分布:電纜過熱是導致絕緣加速老化甚至擊穿的直接原因。在線監測通過點式溫度傳感器(如熱電偶、熱敏電阻)實時測量電纜本體(特別是難以直接觀察的直埋或隧道敷設段)以及關鍵連接點(接頭、終端)的表面或內部溫度。監測溫度異常升高(如過載、散熱不良、接觸電阻增大)至關重要。接地線電流:對于單芯電纜,金屬護套通常采用單點接地或交叉互聯接地方式。監測護套接地線電流或回流線電流,能判斷護套絕緣狀態。電流異常增大可能表明護套絕緣破損、多點接地(導致環流產生)、或遭受雜散電流干擾。 變壓器綜合在線監測涵蓋油色譜、局放、溫度等多維度參數。甘肅電纜護層感應電壓在線監測
開關柜局放監測采用暫態地電壓(TEV)與超聲波雙模式檢測。重慶電纜環流在線監測裝置
氣體絕緣開關設備(GIS)是現代電力系統中極為重要的電氣設備,廣泛應用于變電站和輸電線路中。其采用六氟化硫(SF?)氣體作為絕緣和滅弧介質,具有體積小、可靠性高、維護工作量少等優勢。然而,GIS設備在長期運行過程中,仍可能因絕緣老化、局部放電、氣體泄漏等問題引發故障,進而影響電力系統的穩定運行。傳統的人工巡檢和定期試驗方式難以及時發現潛在問題,而GIS在線監測技術則能夠實時、連續地獲取設備運行狀態信息,提前預警故障,為設備的預測性維護提供科學依據,從而顯著提高電力系統的可靠性和安全性,降低設備故障帶來的經濟損失和社會影響。局部放電是GIS設備絕緣劣化的早期征兆之一。當GIS內部絕緣材料存在缺陷或受到電場、機械應力等因素影響時,可能會出現局部放電現象。局部放電不僅會加速絕緣材料的老化,還可能引發絕緣擊穿等嚴重故障。因此,局部放電監測是GIS在線監測的關鍵技術之一。目前,常用的局部放電監測方法包括脈沖電流法、超聲波法和高頻電流法。脈沖電流法通過檢測GIS接地線上感應的脈沖電流信號來識別局部放電,其優勢是靈敏度高,能夠檢測到微弱的放電信號,但容易受到外部電磁干擾。 重慶電纜環流在線監測裝置